ESTIMADORES DE FRONTERA PARA LOS SUPUESTOS CLÚSTERES CONSECUTIVOS DE ÓPTIMO POTENCIAL GLOBAL

FRONTIER ESTIMATORS FOR THE ASSUMED CONSECUTIVE CLUSTERS OF OPTIMUM GLOBAL POTENTIAL

Carlos Barrón-Romero¹

(1) Universidad Autónoma Metropolitana, Departamento de Ciencias Básicas. Av. San Pablo No. 180, Azcapotzalco, Ciudad de México, C.P. 02200. México (email: cbarron@azc.uam.mx)

Recibido: 15/01/2023 - Evaluado: 16/02/2023 - Aceptado: 25/03/2023

RESUMEN

Se presentan por primera vez estimadores de frontera para los cúmulos consecutivos de partículas que posiblemente correspondan a mínimos globales de potencial donde el potencial depende del número de partículas (ya sea de decrecimiento negativo como con los potenciales de Lennard Jones y Morse, o bien de crecimiento positivo como con el potencial de Thomson). Su principal característica es que establecen que el potencial global de un clúster está limitado por dos estimadores de frontera que dependen de los potenciales globales de los clústeres anterior y posterior. Esto beneficia a los métodos de optimización global de clústeres de partículas para distinguir soluciones. Gracias a la información compartida en Internet, los estimadores se han verificado con éxito para clústeres bajo diversos potenciales, por ejemplo, de Thomson, Lennard Jones, Morse, y para Quantum Lennard Jones para xenón, argón y neón. Nuevos resultados de Morse se reportan al verificar que los resultados anteriormente reportados no satisfacían estos estimadores.

ABSTRACT

For the first time, frontiers estimators are presented for consecutive clusters of particles that possibly correspond to global potential minima where the potential has a behavior of linear change with respect to the number of particles (either of negative decrease as with the potentials of Lennard Jones and Morse, or growth as with the Thomson potential). Their main characteristic is that they establish that the global potential of a cluster is limited by two frontier estimators that depend on the global potentials of the previous and subsequent clusters. This benefits global particle cluster optimization methods to distinguish solutions. Thanks to information shared on the Internet, the estimators have been successfully verified for clusters under various potentials, for example, Thomson, Lennard Jones, Morse, and for Quantum Lennard Jones for Xenon, Argon and Neon. New Morse results are reported by verifying that previously reported results did not satisfy these estimators.

Palabras clave: optimización global, cúmulos de átomos y moléculas, problemas de optimización global de muchos cuerpos, dinámica molecular

Keywords: global optimization, atomic and molecular clusters, global many-body optimization problems, molecular dynamics

INTRODUCCIÓN

Los algoritmos y programas de búsqueda de cúmulos de mínimo o máximo potencial global constituyen y son importantes herramientas de Química y Física para el estudio de los cúmulos de partículas desde el punto de vista de sus potenciales de interacción a pares. El interés en este tema es por la capacidad predictiva de los modelos como antecedente a las costosas experimentaciones de laboratorio, por ejemplo, para los clústeres Jones (LJ) y Morse (ver Cambridge Cluster Database (CCD), Wales *et al.*, 1995), y experimentalmente se han creado cúmulos de Xenón (Echt *et al.*, 1981), cúmulos de Sodio (Haberland *et al.*, 2005), algunos de los cuales están relacionado con los llamados números mágicos, y los cristales icosaédricos artificiales creados (Noya *et al.*, 2021). Hay literatura abundante y sin menoscabo de otras investigaciones que hacen mención a los clústeres de Lennard Jones y Morse (Hartke, 2002; Morse, 1929; Hoare & McInnes, 1983; Northby, 1987; Gómez & Barrón-Romero, 1991; Maier *et al.*, 1992; Maranas & Floudas, 1994; Deaven & Ho, 1995; Barrón *et al.*, 1997; Leary, 1997; Doye, et al., 1995; Wales & Doye, 1997; Doye, 1998; Doye, et al., 2003; Jiang *et al.*, 2003; Huang *et al.*, 2002; Cai *et al.*, 2004; Shao *et al.*, 2004b; Barrón, 2005; Shao *et al.*, 2005; Doye, 2006; Dittner & Hartke, 2017; Barrón, 2022; Barrón, 2023).

Son varias las formas de mejorar el potencial de los clústeres, y muchos autores han propuesto estrategias ad-hoc para determinar a un posible clúster óptimo utilizando el clúster anterior y el siguiente sin límites explícitos. Fue Northby, en su artículo seminal (Northby, 1987), quien expone el concepto de secuencia creciente en la red IC. De manera similar, otros autores y en particular Hoare y McInnes (1983), sugirieron partir del núcleo visto como la estructura de la semilla para el crecimiento de los cúmulos consecutivos. Por lo tanto, la secuencia creciente también se relaciona con el concepto de familias de clústeres. En Dittner y Hartke (2017), existe un método para el análisis del núcleo de los clústeres óptimos de LJ utilizando el análisis de vecino común (CNA). Hay una enorme cantidad de artículos sobre la fisicoquímica del estudio de los clústeres, su importancia para la tecnología moderna, el diseño de nuevos materiales, la construcción experimental y su uso para comprender y mejorar los procesos matemáticos inspirados en la física que mantienen este tema en la frontera de la investigación científica y tecnológica (Niroomand *et al.*, 2023; Noya *et al.*, 2021; Baletto & Ferrando, 2005).

Recientemente la prueba de monotonía propuesta en Kiessling (2023) para los posibles cúmulos óptimos globales del potencial de Lennard Jones motivo la búsqueda de estimadores que delimiten a los putativos y consecutivos cúmulos de óptimo potencial global. Hasta donde es del conocimiento del autor del presente artículo. Esta es la primera vez que se presentan estimadores de frontera para problemas de optimización global bajo la condición de que el cambio de potencial respecto del número de partículas es lineal.

DESARROLLO

Los potenciales de interacción por pares de partículas pueden ser positivos o negativos ([Pardalos *et al.*, 1994], por ejemplo: Potenciales de Born-Meyer, Kihara, LJ, Mie, Morse y Thomson) y el problema puede ser de determinar un cúmulo óptimo puede ser de maximización o minimización. Sin pérdida de generalidad se puede asumir un potencial positivo (P) creciente linealmente respecto al número de partículas y con el objetivo de determinar la configuración de mínimo potencial global. Por ejemplo, el potencial electrostático de Thomson para determinar el mínimo potencial electrostático sobre todas las configuraciones de n electrones sobre la esfera unitaria es:

$$PH(n) = \min_{n} \sum_{1 \le i < j \le n} PH(i, j)$$

donde $PH(i, j) = \frac{1}{r_{ij}}$, $r_{ij} = |r_i - r_j|$ es la distancia sobre la esfera de los electrones $i \in j$.

Por otro lado, Morse y Lennard Jones son dos funciones de potencial de Van Der Waals que cumplen las propiedades de un pozo de potencial a pares (Pardalos *et al.*, 1994):

$$LJ(d) = \frac{1}{d^{12}} - \frac{2}{d^6} \mathbf{y}$$
$$Morse(\delta, d) = e^{\delta(1-d)} \left(e^{\delta(1-d)} - 2 \right)$$

donde d es la distancia entre partículas.

Note que en general para cualquier potencial (P) a pares el potencial total de un cúmulo corresponde a las aportaciones de las aristas de su grafo completo entre todos los vértices y que por tanto el número de aristas, i.e., de pares de vértices de aportación P(i, j) al potencial del clúster es: $\binom{n}{2} = \frac{n(n-1)}{2}$. Además, el factor $\binom{n}{2}$, se usa en el promedio del potencial para un clúster de tamaño n, $\overline{P}(n) = \frac{2P(n)}{n(n-1)}$.

El problema de los cúmulos de partículas consecutivos se plantea como sigue:

- Dado el posible clúster óptimo de n-1 partículas con potencial P(n − 1), determinar el posible cúmulo óptimo de n partículas (crecimiento).
- 2) O bien, dado el posible clúster óptimo de n+1 partículas con potencial P(n + 1), determinar el posible cúmulo óptimo de n partículas (decrecimiento).

De lo anterior con buenas estrategias para determinar por crecimiento o por decrecimiento al clúster intermedio se tiene que cumplir por construcción que

$$P(n-1) < P(n) < P(n+1).$$

La expresión anterior es la *relación de orden de cúmulos consecutivos obvia* y natural entre cúmulos consecutivos que todos los posibles cúmulos óptimos consecutivos deben satisfacer y que todos los investigadores de optimización global de este tema han utilizado siempre.

Proposición. Para cualesquiera conjuntos de elementos de supuestamente mínimo potencial global de tamaño n \geq 2, se cumple:

$$\bar{P}(n) < \bar{P}(n + 1).$$

Demostración. Asumiendo lo contrario se llega a la contradicción: P(n) > P(n + 1).

Los dos estimadores de frontera que se presentan mejoran la relación de orden obvia cerrando el intervalo del potencial de P(n) respecto a sus vecinos inmediatos.

Proposición. Para cualesquiera conjuntos de elementos de supuestamente mínimo potencial global de tamaño n \geq 3, se cumple:

$$\frac{n}{n-2}P(n-1) < P(n) < \frac{n-1}{n+1}P(n+1)$$

donde P(n - 1), P(n) y P(n + 1) son los posibles potenciales óptimos de cúmulos de n - 1, n y n + 1 partículas respectivamente.

Demostración. El promedio de aportación para un clúster de tamaño n es

$$\overline{P}(n) = \frac{2P(n)}{n(n-1)}.$$

Se tiene $\overline{P}(n-1) < \overline{P}(n) < \overline{P}(n+1)$. Para n-1 y n:

$$\frac{2P(n-1)}{(n-1)(n-2)} < \frac{2P(n)}{n(n-1)}.$$

Simplificando: $\frac{n}{n-2}P(n-1) < P(n)$.

Para n y n + 1:

$$\frac{2P(n)}{n(n-1)} < \frac{2P(n+1)}{(n+1)n}$$

Finalmente: $P(n) < P(n+1) \frac{n-1}{n+1}$.

Note que los factores de los estimadores cumplen que $1 < \frac{n}{n-2} y \frac{n-1}{n+1} < 1$ por lo que mejoran la relación de orden de los cúmulos consecutivos al cerrar el intervalo del potencial del posible cúmulo óptimo global de n partículas. En el caso de que el potencial sea negativo se invierten las desigualdades de los estimadores de frontera. Además, se tiene:

$$\frac{P(n-1)}{P(n+1)} < \frac{(n-1)(n-2)}{n(n+1)}$$

Lo que conduce a que $\frac{p(n-1)}{p(n+1)}$ es creciente y asintóticamente tiende a 1, i.e., $\lim_{n \to \infty} \frac{p(n-1)}{p(n+1)} = 1$.

RESULTADOS Y DISCUSIÓN

Las figuras 1 y 2 muestran ejemplos gráficos de los estimadores para los potenciales de Thomson y LJ. Las tablas 1, 2, 3, 4 y 5 muestran que los nuevos estimadores de frontera se satisfacen para los posibles cúmulos óptimos de diversos potenciales cuyos datos se tomaron de dos fuentes del Internet: 1) Wikipedia (2023) de https://es.wikipedia.org/wiki/Problema_de_Thomson y 2) de Wales, et al., 1995 de https://www-wales.ch.cam.ac.uk /CCD.html; http://doye.chem.ox.ac.uk/jon/struc tures/Morse/tables.html; https://www-wales.ch.cam.ac.uk/~florent/LJZPE/table .html.

Fig. 1: Ejemplo de los estimadores $\frac{n}{n-2} P(n-1)$ (rojo), $\frac{n-1}{n+1} P(n+1)$ (azul) sobre P(n) (verde, potencial de referencia) donde P es el potencial de Lennard Jones.

Fig. 2: Ejemplo de los estimadores $\frac{n}{n-2}P(n-1)$ (rojo), $\frac{n-1}{n+1}P(n+1)$ (azul) sobre P(n) (verde, potencial de referencia) donde P es el potencial de Lennard Jones.

Tabla 1: Datos de https://www-wales.ch.cam.ac.uk/~florent/LJZPE/table.html, Cal	lvo et al. (2001) para los clústeres
cuánticos de LJ y Xenon (Xe).	

	n/(n-2) LJ(n-1)	IJ(n)	(n-1)/(n+1) LJ(n+1)		n/(n-2) Xe(n-1)	Xe(n)	(n-1)/(n+1) Xe(n+1)
30		-128.2866		30		-123.2835	
31	-137.1339	-133.5864	-130.9083	31	-131.7858	-128.1044	-125.5577
32	-142.4922	-139.6355	-136.0644	32	-136.6447	-133.9283	-130.5109
33	-148.6443	-144.8427	-141.2184	33	-142.5688	-138.9310	-135.4622
34	-153.8954	-150.0445	-146.8563	34	-147.6142	-143.9285	-140.8902
35	-159.1381	-155.7566	-152.8351	35	-152.6515	-149.4290	-146.6468
36	-164.9188	-161.8254	-158.0048	36	-158.2189	-155.2731	-151.6135
37	-171.0725	-167.0337	0.0000	37	-164.1458	-160.2772	
65		-334.9715		65		-322.1049	
66	-345.4394	-334.9715	-330.9282	66	-323.8115	-328.0173	-332.1706
67	-345.2783	-341.1106		67	-338.1101	-333.9306	
75		-397.4923		75		-382.1103	
76	-408.2354	-402.8949	-398.4580	76	-392.4376	-387.3240	-383.0620
77	-413.6387	-409.0835	-404.1586	77	-397.6526	-393.2770	-388.8650
78	-419.8489	-414.7944	-411.1321	78	-403.6264	-399.0983	-395.6011
79	-425.5683	-421.8109		79	-409.4645	-405.8764	
82		-440.5504		82		-423.8174	
83	-451.4282	-446.9241	-441.8797	83	-434.2820	-429.9633	-425.1124
84	-457.8247	-452.6572	-448.2545	84	-440.4502	-435.4810	-431.4236
85	-463.5646	-459.0558	-454.5616	85	-445.9745	-441.8194	-437.4118
86	-469.9857	-465.3845	-461.2453	86	-452.3389	-447.8263	-443.7837
87	-476.3347	-472.0982	-468.1455	87	-458.3634	-454.2257	-450.4297
88	-483.0772	-479.0326	-475.1314	88	-464.7891	-460.9048	-457.1789
89	-490.0449	-486.0539	-481.4909	89	-471.5003	-467.6888	-463.3120
90	-497.1006	-492.4339		90	-478.3181	-473.8418	

	n/(n-2) Ar(n-1)	Ar(n)	(n-1)/(n+1) Ar(n+1)		n/(n-2) Ne(n-1)	Ne(n)	(n- 1)/(n+1) Ne(n+1)
30		-113.2773		30		-80.8072	
31	-121.0895	-117.7054	-115.1685	31	-86.3801	-84.1779	-82.7148
32	-125.5524	-122.8464	-119.4391	32	-89.7898	-88.2292	-85.9020
33	-130.7720	-127.1449	-123.9497	33	-93.9214	-91.4441	-88.8603
34	-135.0914	-131.6966	-128.9581	34	-97.1593	-94.4140	-92.7399
35	-139.6782	-136.7737	-134.2702	35	-100.1361	-98.3605	-95.7781
36	-144.8192	-142.1685	-138.8309	36	-104.1464	-101.4121	-98.6572
37	-150.2924	-146.7641		37	-107.2071	-104.2947	
65		-296.3752		65		-212.7637	
66	-305.6369	-301.8306	-298.1179	66	-219.4125	-216.9323	-214.5448
67	-311.1176	-307.2907		67	-223.6072	-221.1462	
75		-351.3463		75		-253.8125	
76	-360.8421	-356.7072	-352.7499	76	-260.6723	-257.8744	-255.3315
77	-366.2194	-362.1565	-358.2777	77	-264.7510	-262.1403	-259.3953
78	-371.6870	-367.7061	-364.5389	78	-269.0387	-266.2215	-263.6360
79	-377.2569	-374.0075		79	-273.1363	-270.4836	
82		-390.5145		82		-283.2067	
83	-400.1568	-396.0417	-391.5778	83	-290.1995	-287.1670	-284.2758
84	-405.7013	-401.1284	-397.7620	84	-294.1711	-291.2094	-288.3699
85	-410.7942	-407.3466	-403.3986	85	-298.2265	-295.3186	-292.8556
86	-417.0453	-413.0033	-409.0141	86	-302.3499	-299.8284	-297.3600
87	-422.7210	-418.6380	-414.9980	87	-306.8831	-304.3567	-300.8324
88	-428.3737	-424.6491	-421.2740	88	-311.4347	-307.8285	-305.4956
89	-434.4111	-430.9584	-426.9542	89	-314.9050	-312.5185	-309.4148
90		-436.6577		90	-319.6212	-316.4470	

Tabla 2: Datos de https://www-wales.ch.cam.ac.uk/~florent/LJZPE/table.html, Calvo *et al.* (2001) para los clústeres cuánticos de Argón (Ar) y Neón (Ne).

Las tablas 1 y 2 utilizan los resultados de Calvo et al. (2001) de su investigación del comportamiento termodinámico de sistemas cuánticos de muchos cuerpos. El cumplimiento de los estimadores de frontera para estos problemas muestra la eficiencia y solidez de sus métodos y modelos de optimización global que crearon para estimar mediante simulaciones cuánticas los potenciales de los clústeres LJ, Xenón, Argón y Neón.

	abla 3: Datos d	ie https://es.w	kipedia.org/wi	ki/Pro	biema_de_ i no	mson, wikiped	dia (2023).
	n/(n-2)	T(n)	(n-1)/(n+1)		n/(n-2)	T(n)	(n-1)/(n+1)
2	1(11-1)	0 5000	1(11+1)	52	1 143 8121	1 145 4190	1 146 9441
3	1,5000	1.7321	1.8371	53	1,190.3374	1,191,9223	1.193.4592
4	3.4641	3.6742	3.8848	54	1.237.7655	1.239.3615	1.240.9446
5	6.1237	6.4747	6.6569	55	1.286.1298	1.287.7727	1.289.3416
6	9.7120	9.9853	10.3236	56	1.335.4680	1.337.0949	1.338.7031
7	13.9794	14.4530	14.7565	57	1,385,7166	1,387,3832	1,389.0107
8	19.2706	19.6753	20.0355	58	1,436.9326	1,438.6183	1,440.2386
9	25,2968	25,7600	26.1736	59	1,489,0961	1,490,7733	1,492.3694
10	32,2000	32.7169	33.2153	60	1.542.1793	1,543.8304	1.545.5503
11	39,9874	40.5965	40.9710	61	1.596.1636	1.597.9418	1,599,5898
12	48.7157	49.1653	49.7989	62	1.651.2066	1,652,9094	1.654.6295
13	58.1044	58.8532	59.4055	63	1,707,1032	1,708.8797	1.710.6212
14	68.6621	69.3064	69.9142	64	1,764.0048	1,765.8026	1.767.5551
15	79.9689	80.6702	81.2977	65	1.821.8598	1,823,6680	1.825.3978
16	92.1946	92.9117	93.5739	66	1,880.6576	1,882,4415	1,884,1489
17	105.2999	106.0504	106.7417	67	1,940.3628	1,942,1227	1,943,9666
18	119,3067	120.0845	120.8695	68	2,000.9749	2,002.8747	2,004.6919
19	134.2121	135.0895	135.7934	69	2,062.6620	2,064.5335	2,066.3266
20	150.0994	150.8816	151.6758	70	2,125.2551	2,127,1009	2,128,9415
21	166.7638	167.6416	168,4432	71	2,188,7560	2,190.6499	2,192.3623
22	184,4058	185.2875	186.1971	72	2,253,2399	2,255.0012	2,257.0549
23	202.9340	203,9302	204.7348	73	2,318,5224	2,320,6339	2,322.5575
24	222.4693	223.3471	224.3077	74	2,385.0959	2,387.0730	2,388.9198
25	242.7686	243.8128	244.7385	75	2,452,4722	2,454.3697	2,456,2887
26	264.1305	265.1333	266.0209	76	2,520.7040	2,522.6749	2,524.5294
27	286.3440	287.3026	288.3136	77	2,589.9462	2,591.8502	2,593.7889
28	309.4028	310.4915	311.5562	78	2,660.0567	2,662.0465	2,664.0522
29	333.4909	334.6344	335.6303	79	2,731.1905	2,733.2484	2,735.2220
30	358.5369	359.6039	360.6579	80	2,803.3316	2,805.3559	2,807.4482
31	384.4042	385.5308	386.4949	81	2,876.3775	2,878.5228	2,880.5558
32	411.2329	412.2613	413.5250	82	2,950.4859	2,952.5697	2,954.5760
33	438.8588	440.2041	441.3222	83	3,025.4726	3,027.5285	3,029.5731
34	467.7168	468.9049	470.0802	84	3,101.3706	3,103.4651	3,105.5294
35	497.3233	498.5699	499.7267	85	3,178.2474	3,180.3614	3,182.4392
36	527.8975	529.1224	530.3152	86	3,256.0843	3,258.2116	3,260.2881
37	559.3580	560.6189	561.8260	87	3,334.8754	3,337.0008	3,339.0675
38	591.7644	593.0385	594.2665	88	3,414.6054	3,416.7202	3,418.8449
39	625.0946	626.3890	627.6415	89	3,495.2655	3,497.4390	3,499.5559
40	659.3569	660.6753	661.9696	90	3,576.9263	3,579.0912	3,581.2365
41	694.5561	695.9167	697.2172	91	3,659.5202	3,661.7137	3,663.8723
42	730.7126	732.0781	733.4145	92	3,743.0851	3,745.2916	3,747.4821
43	767.7892	769.1908	770.4845	93	3,827.6057	3,829.8443	3,832.0048
44	805.8190	807.1743	808.5800	94	3,913.1018	3,915.3093	3,917.5239
45	844.7173	846.1884	847.6381	95	3,999.5095	4,001.7717	4,003.9633
46	884.6515	886.1671	887.6099	96	4,086.9158	4,089.1540	4,091.3989
47	925.5523	927.0593	928.3504	97	4,175.2415	4,177.5336	4,179.7445
48	967.3662	968.7135	970.2691	98	4,264.5655	4,266.8225	4,269.1161
49	1,009.9353	1,011.5572	1,012.9750	99	4,354.7982	4,357.1392	4,359.3836
50	1,053.7054	1,055.1823	1,056.6891	100	4,446.0604	4,448.3506	4,450.6774
51	1,098.2510	1,099.8193	1,101.3644	101	4,538.2163	4,540.5901	4,542.8790

Tabla 3: Datos de https://es.wikipedia.org/wiki/Problema_de_Thomson, Wikipedia (2023).

	(((Continuat				
	n/(n-2)	T(n)	(n-1)/(n+1)		n/(n-2)	T(n)	(n-1)/(n+1)
100	I (n-1)	4 632 7266	I(n+1)	4 5 2	I(n-1)		I(n+1)
102	4,631.4019	4,633./366	4,636.0340	152	10,514.9258	10,517.8676	10,520.7353
103	4,725.4937	4,/2/.8366	4,/30.1289	153	10,657.1771	10,660.0827	10,663.0689
104	4,820.5393	4,822.8765	4,825.3054	154	10,800.3470	10,803.3724	10,806.3157
105	4,916.5246	4,919.0006	4,921.3434	155	10,944.5930	10,947.5747	10,950.5829
106	5,013.5968	5,015.9846	5,018.3656	156	11,089.7510	11,092.7983	11,095.7323
107	5,111.5272	5,113.9535	5,116.2799	157	11,235.9312	11,238.9030	11,241.8637
108	5,210.4432	5,212.8135	5,215.2537	158	11,382.9915	11,385.9902	11,388.9419
109	5,310.2493	5,312.7351	5,315.1211	159	11,531.0346	11,534.0240	11,537.0166
110	5,411.1191	5,413.5493	5,415.9186	160	11,680.0243	11,683.0548	11,686.0899
111	5,512.8805	5,515.2932	5,517.7227	161	11,830.0115	11,833.0847	11,836.0991
112	5,615.5713	5,618.0449	5,620.5537	162	11,980.9983	11,984.0503	11,987.1049
113	5,719.2709	5,721.8250	5,724.3019	163	12,132.9205	12,136.0131	12,139.0651
114	5,824.0004	5,826.5216	5,829.0129	164	12,285.8404	12,288.9301	12,291.9826
115	5,929.6458	5,932.1813	5,934.6981	165	12,439.7145	12,442.8045	12,445.8702
116	6,036.2546	6,038.8156	6,041.2768	166	12,594.5460	12,597.6491	12,600.7333
117	6,143.8385	6,146.3424	6,148.8622	167	12,750.3478	12,753.4694	12,756.5197
118	6,252.3139	6,254.8770	6,257.3835	168	12,907.1257	12,910.2127	12,913.3555
119	6,361.7980	6,364.3473	6,366.8437	169	13,064.8260	13,068.0065	13,071.0731
120	6,472.2176	6,474.7563	6,477.2604	170	13,223.5780	13,226.6811	13,229.7904
121	6,583.5758	6,586.1219	6,588.5651	171	13,383.2098	13,386.3559	13,389.4946
122	6,695.8906	6,698.3745	6,701.0658	172	13,543.8425	13,547.0181	13,550.1539
123	6,809.0914	6,811.8272	6,814.4576	173	13,705.4628	13,708.6352	13,711.7482
124	6,923.4965	6,926.1700	6,928.8097	174	13,868.0380	13,871.1871	13,874.3838
125	7,038.7906	7,041.4733	7,044.0554	175	14,031.5476	14,034.7813	14,037.9985
126	7,155.0454	7,157.6692	7,160.2554	176	14,196.1006	14,199.3548	14,202.5230
127	7,272.1919	7,274.8195	7,277.4917	177	14,361.6331	14,364.8375	14,368.0364
128	7,390.2928	7,393.0074	7,395.6405	178	14,528.0743	14,531.3096	14,534.5227
129	7,509.4328	7,512.1073	7,514.7494	179	14,695.5051	14,698.7546	14,701.9099
130	7,629.4840	7,632.1674	7,634.8356	180	14,863.9091	14,867.0999	14,870.3184
131	7,750.4956	7,753.2052	7,755.7265	181	15,033.2128	15,036.4672	15,039.6237
132	7,872.4852	7,875.0453	7,877.9058	182	15,203.5391	15,206.7306	15,210.0992
133	7,995.2750	7,998.1792	8,000.8645	183	15,374.7608	15,378.1666	15,381.3951
134	8,119.3637	8,122.0897	8,124.7331	184	15,547.1574	15,550.4215	15,553.7339
135	8,244.2264	8,246.9095	8,249.6147	185	15,720.3714	15,723.7201	15,726.9523
136	8,369.9977	8,372.7433	8,375.4537	186	15,894.6301	15,897.8974	15,901.0717
137	8,496.7839	8,499.5345	8,502.3715	187	16,069.7666	16,072.9752	16,076.3586
138	8,624.5276	8,627.4064	8,630.2382	188	16,245.8029	16,249.2227	16,252.5479
139	8,753.3539	8,756.2271	8,759.0380	189	16,423.0112	16,426.3719	16,429.6449
140	8,883.1289	8,885.9806	8,888.7201	190	16,601.1206	16,604.4283	16,607.7093
141	9,013.8364	9,016.6153	9,019.4227	191	16,780.1366	16,783.4522	16,786.6369
142	9,145.4241	9,148.2716	9,151.0379	192	16,960.1201	16,963.3384	16,966.9009
143	9,278.0343	9,280.8399	9,283.6166	193	17,140.9650	17,144.5647	17,147.9912
144	9,411.5559	9,414.3718	9,417.2195	194	17,323.1540	17,326.6161	17,329.9048
145	9,546.0413	9,548.9288	9,551.7191	195	17,506.1666	17,509.4893	17,512.9150
146	9,681.5528	9,684.3818	9,687.3143	196	17,689.9995	17,693.4605	17,696.8342
147	9,817.9595	9,820.9324	9,823.8330	197	17,874.9319	17,878.3402	17,881.7949
148	9,955.4657	9,958.4060	9,961.3316	198	18,060.7722	18,064.2622	18,067.6545
149	10,093.8945	10,096.8599	10,099.7138	199	18,247.6557	18,251.0825	18,254.4543
150	10,233.3040	10,236.1964	10,239.1334	200	18,435.4369	18,438.8427	18,442.2421
151	10,373.5950	10,376.5715	10,379.4746	201	18,624.1577	18,627.5912	18,630.8958

(continuación Tabla 3)

					_				
		n/(n-2) MO(3,n-1)	MO(3,n)	(n-1)/(n+1) MO(3,n+1)			n/(n-2) MO(6,n-1)	MO(6,n)	(n-1)/(n+1) MO(6,n+1)
Ī	14		-56.7547			14		-45.6193	
	15	-65.4862	-63.1621	-60.4981		15	-52.6376	-49.7484	-47.1151
	16	-72.1853	-69.1406	-66.7610		16	-56.8553	-53.8458	-51.1248
	17	-78.3594	-75.6624	-73.4038		17	-61.0253	-57.9414	-55.7238
	18	-85.1202	-82.5793	-81.1056		18	-65.1841	-62.6892	-61.2826
	19	-92.2945	-90.6475	-87.6757		19	-70.0645	-68.4923	-65.2570
	20	-100.7194	-97.4174	-94.4001		20	-76.1025	- 72.5078	-69.2406
Ī	21	-107.6719	-104.3369	-101.8557		21	-80.1402	-76.5291	-73.7607
Ī	22	-114.7706	-112.0412	-110.2837		22	-84.1821	-81.1367	-79.1933
	23	-122.7118	-120.7869	-117.2275		23	-88.8640	-86.7355	-83.1283
ſ	24	-131.7675	-127.8845	-125.1869		24	-94.6205	-90.6854	-87.5177
	25	-139.0049	-136.0727	-134.1435		25	-98.5711	-95.1279	-92.8150
	26	-147.4121	-145.3221	-141.2165		26	-103.0552	-100.5496	-96.9864
	27	-156.9479	-152.5139	-149.2895		27	-108.5936	-104.7453	-101.2123
	28	-164.2457	-160.7734	-158.3835		28	-112.8026	-108.9978	-106.2738
	29	-172.6825	-170.1156	-165.7401		29	-117.0717	-114.1459	-110.5373
	30	-182.2667	-177.5786	-173.9853		30	-122.2992	-118.4328	-114.9314
	31	-189.8255	-185.9842	-183.2517		31	-126.6006	-122.8577	-119.7857
	32	-198.3832	-195.4685	-191.8324		32	-131.0483	-127.7714	-124.2700
	33	-208.0793	-204.2087	-201.4761		33	-136.0147	-132.2874	-128.7506
	34	-216.9718	-214.0684	-209.0988		34	-140.5554	-136.7975	-133.8453
	35	-227.0422	-221.7715	-217.7022		35	-145.0883	-141.9572	-139.1941
	36	-234.8168	-230.5083	-227.0347		36	-150.3076	-147.3820	-143.6809
	37	-243.6802	-240.0081	-236.0455		37	-155.8038	-151.8912	-149.1888
	38	-253.3419	-249.1592	-245.6657		38	-160.3296	-157.4771	-155.0983
	39	-262.6272	-258.9450	-254.9750		39	-165.9894	-163.4820	-159.5934
	40	-272.5736	-268.3948	-264.8248		40	-172.0863	-167.9931	-164.1109
	41	-282.1586	-278.4056	-274.6052		41	-176.6081	-172.5268	-169.2193
	42	-292.3259	-288.3354	-284.3040		42	-181.1532	-177.6802	-174.5768
	43	-302.4006	-298.1724	-294.2644		43	-186.3475	-183.0927	-179.0978
	44	-312.3711	-308.2770	-304.4980		44	-191.8114	-187.6263	-184.3790
	45	-322.6155	-318.6607	-312.8143		45	-196.3531	-192.9547	-190.5178
	46	-333.1452	-327.0331	-322.3400		46	-201.7254	-199.1778	-195.0359
	47	-341.5679	-336.6662	-332.2185		47	-208.0301	-203.7042	-200.3338
	48	-351.3038	-346.6628	-341.8654		48	-212.5609	-209.0440	-206.4678
	49	-361.4144	-356.4128	-351.9702		49	-217.9395	-215.2537	-211.0274
	50	-371.2634	-366.6356	-361,9019		50	-224.2226	-219.8202	-216.5524

Tabla 4: Datos de http://doye.chem.ox.ac.uk/jon/structures/Morse/tables.html, Doye *et al.* (1995) para clústeres de Morse con δ =3 y δ =6. Los marcados con negritas son nuevos resultados.

			(continuaci	on	Tap	la 4).		
	n/(n-2) MO(3,n-1)	MO(3,n)	(n-1)/(n+1) MO(3,n+1)			n/(n-2) MO(6,n-1)	MO(6,n)	(n-1)/(n+1) MO(6,n+1)
51	-381.6003	-376.6734	-372.6801		51	-228.7925	-225.3912	-222.7067
52	-391.7403	-387.5873	-383.7348		52	-234.4069	-231.6150	-228.8601
53	-402.7868	-398.7832	-392.8562		53	-240.6980	-237.8350	-235.0190
54	-414.1210	-407.9660	-402.7215		54	-246.9825	-244.0582	-241.1853
55	-423.3610	-417.9186	-413.3037		55	-253.2679	-250.2866	-244.8543
56	-433.3970	-428.6113	-424.5231		56	-259.5565	-253.9230	-248.9876
57	-444.1972	-439.9603	-433.9346		57	-263.1565	-258.0417	-254.3276
58	-455.6732	-449.4323	-443.9327		58	-267.2575	-263.4108	-258.8623
59	-465.2018	-459.5093	-454.7669		59	-272.6532	-267.9452	-264.2299
60	-475.3544	-470.4485	-466.2216		60	-277.1847	-273.3412	-269.5880
61	-486.3959	-482.0258	-475.2120		61	-282.6070	-278.7266	-274.0481
62	-498.0933	-491.0524	-485.8039		62	-288.0175	-283.1830	-279.4003
63	-507.1525	-501.7319	-496.8057		63	-292.4677	-288.5609	-284.7463
64	-517.9168	-512.8317	-507.3404		64	-297.8694	-293.9317	-289.2110
65	-529.1121	-523.4464	-518.2682		65	-303.2629	-298.3923	-294.5583
66	-539.8041	-534.4640	-528.4929		66	-307.7171	-303.7633	-299.9026
67	-550.9091	-544.7543	-539.2418		67	-313.1099	-309.1303	-305.1286
68	-561.2620	-555.5825	-549.9478		68	-318.4979	-314.3749	-310.5498
69	-572.1670	-566.3641	-561.2329		69	-323.7592	-319.8199	-316.5767
70	-583.0219	-577.7398	-571.8221		70	-329.2264	-325.8877	-322.2482
71	-594.4859	-588.3967	-583.0322		71	-335.3338	-331.5887	-326.7850
72	-605.2080	-599.6903	-594.1987		72	-341.0627	-336.1218	-331.9165
73	-616.5830	-610.9367	-605.8507		73	-345.5900	-341.2663	-337.2430
74	-627.9071	-622.6799	-616.6197		74	-350.7459	-346.6108	-342.0998
75	-639.7396	-633.5134	-627.9792		75	-356.1070	-351.4724	-346.9945
76	-650.6354	-644.9516	-639.0388		76	-360.9716	-356.3727	-352.3316
77	-662.1503	-656.0798	-650.4590		77	-365.8760	-361.7271	-357.6602
78	-673.3450	-667.5763	-661.7519		78	-371.2462	-367.0723	-363.3935
79	-684.9159	-678.9402	-673.3134		79	-376.6066	-372.8323	-368.8751
80	-696.3490	-690.5779			80	-382.3921	-378.3335	

(continuación Tabla 4).

La tabla 3 muestra que los resultados de los cúmulos del electrones de los problemas de Thomson publicados por Wikipedia (2023) en https://es.wikipedia.org/wiki/Problema_de_Thomson satisfacen los estimadores de frontera. En este problema el Potencial de Thomson es positivo a diferencia de los potenciales negativos de las tablas 1, 2, 4, y 5. Es relevante que se satisfagan los estimadores de frontera de las aportaciones de los distintos investigadores que posiblemente utilizaron métodos de optimización global diversos.

	n/(n-2) MO(10,n-1)	MO(10,n)	(n-1)/(n+1) MO(10,n+1)		n/(n-2) MO(14,n-1)	MO(14,n)	(n-1)/(n+1) MO(14,n+1)
14		-42.6752		14		-40.7983	
15	-49.2406	-46.5414	-43.9792	15	-47.0750	-44.8064	-42.7127
16	-53.1902	-50.2619	-47.6326	16	-51.2074	-48.8145	-46.6082
17	-56.9635	-53.9836	-51.2508	17	-55.3231	-52.8226	-50.5164
18	-60.7315	-57.6571	-55.6230	18	-59.4254	-56.8309	-54.4111
19	-64.4403	-62.1668	-59.1112	19	-63.5169	-60.8124	-58.3128
20	-69.0743	-65.6791	-62.8356	20	-67.5694	-64.7920	-62.2328
21	-72.5927	-69.4499	-66.8130	21	-71.6122	-68.7836	-66.1743
22	-76.3949	-73.4943	-71.5145	22	-75.6619	-72.7917	-70.5805
23	-80.4937	-78.3254	-75.5060	23	-79.7243	-77.3025	-74.5337
24	-85.4459	-82.3702	-80.0305	24	-84.3300	-81.3095	-78.6392
25	-89.5328	-86.9897	-84.3418	25	-88.3799	-85.4774	-83.2715
26	-94.2388	-91.3703	-88.3514	26	-92.6005	-90.2108	-87.2406
27	-98.6799	-95.4195	-92.8649	27	-97.4276	-94.2198	-91.3080
28	-102.7595	-100.0084	-96.8755	28	-101.4675	-98.3317	-95.6867
29	-107.4164	-104.0514	-101.3331	29	-105.6155	-102.7746	-99.7134
30	-111.4837	-108.5712	-105.7715	30	-110.1156	-106.8358	-104.5503
31	-116.0588	-113.0661	-109.9541	31	-114.2038	-111.7607	-108.5321
32	-120.6039	-117.2843	-114.7634	32	-119.2114	-115.7676	-113.4237
33	-124.8511	-122.1675	-118.7931	33	-123.2364	-120.7413	-117.4101
34	-129.8029	-126.2177	-123.7730	34	-128.2877	-124.7483	-122.3238
35	-133.8672	-131.2744	-127.7979	35	-132.3088	-129.7374	-126.3144
36	-138.9965	-135.3154	-132.7732	36	-137.3690	-133.7447	-131.2108
37	-143.0477	-140.3602	-138.1735	37	-141.3872	-138.7086	-136.7252
38	-148.1580	-145.8498	-142.2007	38	-146.4146	-144.3211	-140.7209
39	-153.7336	-149.8872	-146.2283	39	-152.1222	-148.3274	-144.7171
40	-157.7760	-153.9245	-150.7880	40	-156.1341	-152.3337	-148.9928
41	-161.8181	-158.5207	-154.8246	41	-160.1457	-156.6335	-152.9914
42	-166.4467	-162.5658	-159.8072	42	-164.4652	-160.6410	-157.9310
43	-170.4959	-167.6026	-163.8434	43	-168.4772	-165.6350	-161.9314
44	-175.5837	-171.6455	-168.8142	44	-173.5224	-169.6424	-166.7556
45	-179.6290	-176.6660	-173.3563	45	-177.5328	-174.5116	-170.7576
46	-184.6963	-181.2362	-177.8417	46	-182.4440	-178.5193	-175.6994
47	-189.2911	-185.7458	-183.6035	47	-186.4535	-183.5082	-181.0186
48	-193.8217	-191.5863	-187.6540	48	-191.4868	-188.8890	-185.0250
49	-199.7389	-195.6393	-192.6640	49	-196.9268	-192.8984	-190.5174
50	-203.7910	-200.6916	-196.7154	50	-200.9358	-198.4556	-194.5283

 Tabla 5: Datos de http://doye.chem.ox.ac.uk/jon/structures/Morse/tables.html, Doye *et al.* (1995) para clústeres de Morse

 $con \delta = 10 \text{ y} \delta = 14.$

	n/(n-2) MO(10,n-1)	MO(10,n)	(n-1)/(n+1) MO(10,n+1)			n/(n-2) MO(14,n-1)	MO(14,n)	(n-1)/(n+1) MO(14,n+1)
51	-208.8831	-204.7446	-201.7276		51	-206.5559	-202.4683	-199.5007
52	-212.9344	-209.7967	-206.3188		52	-210.5670	-207.4808	-203.5125
53	-218.0241	-214.4097	-211.9661		53	-215.6173	-211.4934	-208.6133
54	-222.6562	-220.1186	-217.6029		54	-219.6278	-216.6369	-212.6227
55	-228.4250	-225.8143	-220.7251		55	-224.8118	-220.6462	-217.5960
56	-234.1778	-228.9002	-225.3897		56	-228.8183	-225.6551	-222.5705
57	-237.2238	-233.5857	-230.4292		57	-233.8608	-230.6640	-226.7122
58	-241.9280	-238.6589	-235.0820		58	-238.9020	-234.8091	-232.4175
59	-247.0329	-243.3305	-239.5265		59	-243.0480	-240.5725	-236.4264
60	-251.7212	-247.7860	-244.2100	-	60	-248.8681	-244.5791	-241.4045
61	-256.1855	-252.4883	-248.6208		61	-252.8699	-249.5877	-245.4319
62	-260.9046	-256.9082	-253.7116	-	62	-257.9073	-253.6129	-250.4104
63	-265.3314	-262.0300	-259.6481		63	-261.9281	-258.6206	-256.3187
64	-270.4826	-268.0238	-263.7265		64	-266.9632	-264.5870	-260.3302
65	-276.5325	-272.0988	-268.7469	-	65	-272.9866	-268.5947	-265.3114
66	-280.6019	-277.1452	-273.7485		66	-276.9883	-273.6023	-270.0905
67	-285.6728	-282.1716	-278.2126	-	67	-282.0209	-278.4010	-274.3688
68	-290.7222	-286.6433	-282.8507		68	-286.8373	-282.6830	-279.1299
69	-295.1998	-291.2941	-287.9432		69	-291.1213	-287.4621	-284.1068
70	-299.8615	-296.4121	-293.8869	-	70	-295.9169	-292.4629	-289.9996
71	-305.0038	-302.4054	-297.9474	-	71	-300.9400	-298.4054	-294.0129
72	-311.0455	-306.4602	-302.9828	-	72	-306.9312	-302.4132	-298.9986
73	-315.0929	-311.5175	-308.0926	-	73	-310.9319	-307.4211	-303.9969
74	-320.1708	-316.6508	-314.0397	-	74	-315.9606	-312.4413	-309.9165
75	-325.3261	-322.6436	-318.1002		75	-321.0013	-318.4073	-313.9297
76	-331.3637	-326.6975	-323.1370		76	-327.0129	-322.4143	-318.8688
77	-335.4094	-331.7540	-327.1962	-	77	-331.0120	-327.3720	-322.8822
78	-340.4843	-335.8067	-332.2327		78	-335.9871	-331.3791	-328.2722
79	-344.5289	-340.8621	-336.2886		79	-339.9864	-336.7987	-332.2911
80	-349.6022	-344.9114			80	-345.4346	-340.8114	

(continuación Tabla 5).

CONCLUSIONES

Además de los resultados de la sección anterior, se han verificado los estimadores satisfactoriamente para cúmulos bajo los potenciales de LJ y Morse para cúmulos desde 2 a 2063 partículas que por razones de extensión no se muestran en este trabajo.

Es estimulante la búsqueda de nuevas propiedades que sean útiles para la optimización global. Hay un hueco teórico de herramientas que soporten condiciones necesarias y suficientes de optimización global para cúmulos de más de 5 partículas. Es bien conocido que los únicos casos óptimos globales son para los clústeres de entre 2

y 4 elementos por las condiciones clásicas de optimalidad de primer y segundo orden. Recientemente se demostró la optimalidad global del cúmulo de 13 partículas para el potencial de LJ (ver Barrón, 2022).

La optimización global tiene gran relevancia en las investigaciones de las Tecnologías y Ciencias, y solo los casos de 2 a 4 elementos tienen soluciones globales que cumplen las condiciones de optimalidad clásicas. Los resultados presentados en este trabajo provienen de la clase de problemas de muchos cuerpos que son no lineales. Lo cual aunado a la complejidad intrínseca por el crecimiento de las dimensiones de los problemas de más de 5 elementos hace que se requieran nuevos modelos, algoritmos apropiados y equipos de cómputo de alta velocidad y memoria, y aunque hay robustos desarrollos de algoritmos y software libre eficiente (Morales y Nocedal, 2011; Byrd, et al., 1995; Beale, 1972) para resolver problemas en forma local, la optimización global se mantiene como un tema de investigación de suma importancia y como un pilar que empuja las investigaciones en muchas áreas del conocimiento y la tecnología. La aportación de los estimadores de frontera para determinar soluciones apropiadas de la optimización global de problemas de muchos cuerpos es teórica y se mantendrá junto con los avances de la computación clásica y de la computación cuántica.

Se continuará el estudio de condiciones y propiedades matemáticas, físicas y químicas de cúmulos de óptimo potencial global por su relevancia en las nuevas tecnologías y problemas de optimización global de muchos cuerpos.

AGRADECIMIENTOS

Agradecimiento a los organizadores del XIV CIDIQ 2023 y al área de Álgebra, Geometría y Computación Científica. Este trabajo corresponde con el proyecto de Investigación del Área: Métodos Matemáticos y Computacionales para la Optimización de Cúmulos de Partículas bajo un pozo de potencial y Sistemas de Control sobre la Ecuación Semilineal Cúbica de Onda de la División de Ciencias Básicas e Ingeniería de la UAM, unidad Azcapotzalco (Clave: CB006-22, Acuerdo: 671.4.3.2.4).

A la Universidad Autónoma Metropolitana unidad Azcapotzalco por su apoyo financiero para la realización de la presente investigación, que pertenece al proyecto de investigación Métodos Matemáticos y Computacionales para la Optimización de Cúmulos de Partículas bajo un buen potencial a pares y Sistemas de Control sobre la Ecuación Semilineal Cúbica de Onda del Área de Investigación de Álgebra, Geometría y Computación Científica.

REFERENCIAS

Baletto, F. and Ferrando, R. (2005). Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys., 77, pp. 371-423.

Barrón-Romero, C. (2023). Estudio de sensibilidad y crecimiento de Nanoestructuras bajo los potenciales de Morse y Lennard Jones. *Avances en Ciencias e Ingeniería, 14* (1), 75-83. (Nota del autor: trabajo preliminar presentado en el *XIII Congreso Internacional de Docencia e Investigación en Química*, publicado en la *Revista Tendencias en Docencia e Investigación Química*, la cual contenía errores que fueron subsanados en la versión enviada a la revista Av. Cien. e Ing.).

Barrón-Romero, C. (2022). *The oLJ13_N13IC cluster is the global minimum cluster of Lennard Jones potential for 13 particles*, 2022 IEEE 3rd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS), Fez, Morocco, 2022, pp. 1-6.

Barrón-Romero, C. (2005). *Minimum search space and efficient methods for structural cluster optimization*. arXiv, http://arxiv.org/abs/math-ph/0504030. *To honor the CIMAT's XXV Anniversary*.

Barrón-Romero, C., Gómez, S. & Romero, D. (1997). Lower Energy Icosahedral Atomic Cluster with Incomplete Core. *Applied Mathematics Letters, 10* (5), 25-28.

Barrón-Romero, C., Gómez, S., Romero, D. & Saavedra, A. (1999). A Genetic Algorithm for Lennard-Jones Atomic clusters. *Applied Mathematics Letters, 12*, 85-90.

Beale, E. M. L. (1972). *A derivation of conjugate-gradients*. In Lootsma, F., editor, Numerical methods for nonlinear optimization. Academic Press.

Byrd, R.H., Lu, P., Nocedal, J. & Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. *SIAM Journal on Scientific Computing*, *16* (5), 1190-1208.

Cai, W., Feng, Y., Shao, X. & Pan, Z. (2002a). Optimization of Lennard-Jones atomic clusters. *THEOCHEM, 579*, 229-34.

Cai, W., Jiang, H. & Shao, X. (2002b). Global optimization of Lennard-Jones clusters by a parallel fast annealing evolutionary algorithm. *Journal of Chemical Information and Computer Sciences, 42* (5), 1099-1103.

Calvo, F., Doye, J.P.K. & Wales, D.J. (2001). Quantum partition functions from classical distributions: Application to rare-gas clusters *J. Chem. Phys.* 114, 7312-7329.

Deaven, D.M. & Ho, K.M. (1995). Molecular Geometry Optimization with a Genetic Algorithm. *Physical Review Letters*, 75 (2), 288-291.

Dittner, M. & Hartke, B. (2017). Conquering the hard cases of Lennard-Jones clusters with simple recipes. *Computational and Theoretical Chemistry*, *1107*, 7-13.

Doye, J.P.K., Wales, D.J. & Berry, R.S. (1995). The effect of the range of the potential on the structures of clusters, *J. Chem. Phys. 103*, 4234-4249.

Doye, J.P.K. (1998). Thermodynamics and the global optimization of Lennard-Jones clusters. *Journal of Chemical Physics, 109* (19), 8143-8153.

Doye, J.P.K. (2006). *Physical Perspectives on the Global Optimization of Atomic Clusters*, pages 103{139. Springer US, Boston, MA.

Doye, J.P.K. & Wales, D.J. (1995). Magic numbers and growth sequences of small face-centered-cubic and decahedral clusters. *Chemical Physics Letters, 247,* 339-347.

Doye, J.P.K, Miller, M.A. & Wales, D. J. (1999). The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. *The Journal of Chemical Physics*, *110* (14), 6896--6906.

Echt, O., Sattler, K. & Recknagel, E. (1981). Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters. *Phys. Rev. Letters*, *47*, 1121.

Gómez, S. y Barrón-Romero, C. (1991). *The Exponential Tunneling Method*. Technical Report Research Report 3 (1), 1-23. IIMAS-UNAM.

Haberland, H., Hippler, T., Donges, J., Kostko, O., Schmidt, M. & Issendorff, B.V. (2005). Melting of Sodium Clusters: Where Do the Magic Numbers Come from? *Physical Review Letters, 94*, 035701-4.

Hartke, B. (1999). Global Cluster Geometry Optimization by a Phenotype Algorithm with Niches: Location of Elusive Minima, and Low-Order Scaling with Cluster Size. *Journal of Computational Chemistry, 20* (16), 1752-1759.

Hartke, B. (2002). Structural transitions in clusters. *Angewandte Chemie International Edition, 41* (9):1468-1487.

Hoare, M.R. & McInnes, J.A. (1983). Morphology and statistical statics of simple microclusters. *Advances in Physics*, *32* (5), 791-821.

Huang, H.X., Pardalos, P.M. & Shen, Z.J. (2002). Equivalent formulations and necessary optimality conditions for the Lennard-Jones problem. *Journal of Global Optimization*, 22 (1-4), 97-118.

Jiang, H., Cai, W. & Shao, X. (2003). New lowest energy sequence of marks' decahedral Lennard-Jones clusters containing up to 10,000 atoms. *Journal of Physical Chemistry A, 107* (21), 4238-4243.

Kiessling, M.K.-H. (2023). Testing Lennard-Jones clusters for optimality. *The Journal of Chemical Physics, 159* (1), 014301.

Leary, R.H. (1997). Global Optima of Lennard-Jones Clusters. Journal of Global Optimization, 11 (1), 35-53.

Leary, R.H. (1999). Tetrahedral global minimum for the 98-atom Lennard-Jones cluster. *Physical Review E, 60* (6), 6320-6322.

Maier, R., Rosen, J. & Xue, G. (1992). *A discrete-continuous algorithm for molecular energy minimization*. In Proceedings. Supercomputing '92. (Cat. No.92CH3216-9), 16-20 Nov. 1992, Proceedings. Supercomputing '92. (Cat. No.92CH3216-9), 778-786.

Maranas, C.D. & Floudas, C.A. (1994). Global minimum Potential Energy Conformations of Small Molecules. *Journal of Global Optimization*, *4* (2), 135-170.

Morales, J. L. y Nocedal, J. (2011). Remark on algorithm 778: L-BFGS-B: FORTRAN subroutines for large-scale bound constrained optimization". *ACM Transactions on Mathematical Software, 38* (1), pp 1–4.

Morse, P.M. (1929). Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. *Phys. Rev., 34*, 57-64.

Niroomand, M. P., Dicks, L., Pyzer-Knapp, E. O., and Wales, D. J. (2023). Physics Inspired Approaches Towards Understanding Gaussian Processes. *ArXiv e-prints*, 2305.10748.

Northby, J.A. (1987). Structure and binding of Lennard-Jones clusters: $13 \le n \le 147$. *Journal of Chemical Physics, 87*(10), 6166-6177.

Noya, E.G., Wong, Ch.K., Llombart, P & Doye, J.P.K. (2021). How to design an icosahedral quasicrystal through directional bonding. *Nature*, *596*, 367–371.

Pardalos, P.M., Shalloway, D. & Xue, G.L. (1994). Optimization methods for computing global minima of nonconvex potential-energy functions. *Journal of Global Optimization*, *4* (2), 117-133.

Shao, X., Jiang, H. & Cai, W. (2004a). Parallel random tunneling algorithm for structural optimization of Lennard-Jones clusters up to n = 330. *Journal of Chemical Information and Computer Sciences, 44* (1), 193-199.

Shao, X., Xiang, Y. & Cai, W. (2004b). Formation of the central vacancy in icosahedral Lennard-Jones clusters. *Chemical Physics, 305* (1-3), 69-75.

Shao, X., Xiang, Y. & Cai, W. (2005). Structural Transition from Icosahedra to Decahedra of Large Lennard-Jones Clusters. *J. Phys. Chem. A, 109* (23), 5193-7.

Solov'yov, I. A., Solov'yov, A. V. & Greiner, W. (2003). *Fusion process of Lennard-Jones clusters: global minima and magic numbers formation*. ArXiv Physics e-prints, pages 1-47.

Wales, D.J. & Doye, J.P.K. (1997). Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms. *J. Phys. Chem. A., 101* (28), 5111-5116.

Wales, D.J., Doye, J P.K., Dullweber, A., Hodges, M.P., Naumkin, F.Y., Calvo, F., et al. (1995). The Cambridge Cluster Database, Lennard-Jones clusters. Inglaterra. Recuperado el 1 de noviembre de 2023, de https://www-wales.ch.cam.ac.uk /CCD.html; http://doye.chem.ox.ac.uk/jon/struc tures/Morse/tables.html; https://www-wales.ch.cam.ac.uk/~florent/LJZPE/table.html.

Wille, L.T. (1999). Lennard-Jones Clusters and the Multiple-Minima Problem. *Annual Reviews of Computational Physics, VII*, 25-60.

Wolf, M. & Landman, U. (1998). Genetic Algorithms for Structural Cluster Optimization. *Journal of Physical Chemistry A, 102* (30), 6129-6137.

Xiang, Y., Cheng, L., Cai, W. & Shao, X. (2004a). Structural distribution of Lennard-Jones clusters containing 562 to 1000 atoms. *Journal of Physical Chemistry A*, *108* (44), 9516-9520.

Xiang, Y., Jiang, H., Cai, W. & Shao, X. (2004b). An Efficient Method Based on Lattice Construction and the Genetic Algorithm for Optimization of Large Lennard-Jones Clusters. *Journal of Physical Chemistry A, 108* (16), 3586-92.